Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139896

RESUMO

Due to the fact that impregnation with fire retardant usually reduces the strength of the produced particleboards, this research was carried out to investigate whether it is possible to use phenol-formaldehyde (PF) resin modified using various amounts (0%, 5%, 10%, 15%, and 20%) of polymeric 4,4'-methylene diphenyl diisocyanate (pMDI) for this purpose. The need to optimize the addition of pMDI is particularly important due to health and environmental aspects and high price. Furthermore, the curing process of hybrid resins is still not fully explained, especially in the case of small loadings. Manufactured particleboards differed in the share of impregnated particles (50% and 100%). The mixture of potassium carbonate and urea was used as the impregnating solution. Based on the outcomes of hybrid resins properties, it was found that the addition of pMDI leads to the increase in solid content, pH, and viscosity of the mixtures, to the improvement in resin reactivity determined using differential scanning calorimetry and to the decrease in thermal stability in the cured state evaluated using thermogravimetric analysis. Moreover, particleboard property results have shown that using impregnated particles (both 50% and 100%) decreased the strength of manufactured boards bonded using neat PF resin. However, the introduction of pMDI allowed us to compensate for the negative impact of fire-retardant-treated wood and it was found that the optimal loading of pMDI for the board containing 50% of impregnated particles is 5% and for board made entirely of treated wood it is 10%.

2.
Materials (Basel) ; 16(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569976

RESUMO

Insulating materials made from straw are becoming increasingly popular in the construction industry. Straw can be used in the construction of buildings as uncompressed straw chips or in the form of compressed panels. This study aimed to determine the possibility of manufacturing boards from straw particles with densities in the range of 150-400 kg/m3, allowing favorable mechanical properties while simultaneously providing high thermal and acoustic insulation properties. The study also analyzed the influence of the degree of carpentry density on the quality of the manufactured boards. The study shows that insulation boards can be produced from straw particles with satisfactory properties already at densities in the range of 200-150 kg/m3. Boards with this density have a compressive strength of 150 kPa, thermal resistance of 0.033-0.046 W/(m·K), and a sound absorption coefficient above 0.31.

3.
Materials (Basel) ; 16(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37445088

RESUMO

Nowadays, a significant increase in interest in renewable energy sources can be observed. Wind farms have been one of the solutions representing this trend for many years. One of the important elements of windmills is the blades. The data indicate that what to do with the blades after their use is a global problem, and so it is important to find a way to recycle them. Hence, this work aimed to use these blades in the production of wood-based materials. Two fractions of a fragmented blade were used for the tests: a small one and large one. Boards characterized by densities of 650 kg/m3 and 700 kg/m3 were produced, in which the assumed substitution of the wood material with a polymer was 20% or 40%. Mechanical properties such as bending strength (MOR), modulus of elasticity (MOE), and internal bond strength (IB) were investigated. The 2S65 variant achieved the highest static bending strength and a modulus of elasticity of 2625 N/mm2. The second best result was noted for the 4S65 variant, which was significantly different from the 2S65 variant. In the case of the variants with a density of 700 kg/m3, no significant differences were found and their results were significantly lower. Moreover, research on thickness swelling (TS) after 24 h of immersion and water absorption (WA) were also conducted. The obtained results indicate that the manufactured boards are characterized by good physical and mechanical properties.

4.
Materials (Basel) ; 16(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37374584

RESUMO

This study investigated the mechanical, physical, and thermal properties of three-layer particleboards produced from annual plant straws and three polymers: polypropylene (PP), high-density polyethylene (HDPE), and polylactic acid (PLA). The rape straw (Brassica napus L. var. Napus) was used as an internal layer, while rye (Secale L.) or triticale (Triticosecale Witt.) was applied as an external layer in the obtained particleboards. The boards were tested for their density, thickness swelling, static bending strength, modulus of elasticity, and thermal degradation characteristics. Moreover, the changes in the structure of composites were determined by infrared spectroscopy. Among the straw-based boards with the addition of tested polymers, satisfactory properties were obtained mainly using HDPE. In turn, the straw-based composites with PP were characterized by moderate properties, while PLA-containing boards did not show clearly favorable properties either in terms of the mechanical or physical features. The properties of straw-polymer boards produced based on triticale straw were slightly better than those of the rye-based boards, probably due to the geometry of the strands, which was more favorable for triticale straw. The obtained results indicated that annual plant fibers, mainly triticale, can be used as wood substitutes for the production of biocomposites. Moreover, the addition of polymers allows for the use of the obtained boards in conditions of increased humidity.

5.
Polymers (Basel) ; 14(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36433163

RESUMO

This work examines the possibility of applying non-modified nanocellulose and nanocellulose functionalized with 3-aminopropyltriethoxysilane (APTES) as a formaldehyde scavenger for commonly used urea-formaldehyde (UF) adhesive. The effect of silanization was determined with the use of Fourier transform infrared spectroscopy (FTIR), flame atomic absorption spectrometry (FAAS), and elemental analysis. Moreover, the ability of cellulosic nanoparticles to absorb the formaldehyde from an aqueous solution was investigated. After homogenization, cured UF adhesives were examined with the use of FTIR, energy-dispersive spectroscopy (SEM-EDS), and the perforator method to determine the content of formaldehyde. Manufactured boards made of rape straw particles and wood particles were tested in terms of their physico-mechanical properties and formaldehyde emission. Studies have shown that the applied method of silanization was effective. Furthermore, in the case of non-modified nanocellulose, no sign of formaldehyde scavenging ability was found. However, the functionalization of cellulosic nanoparticles with APTES containing an amino group led to the significant reduction of formaldehyde content in both the aqueous solution and the UF adhesive. The mechanical properties of both strawboards and particleboards were improved due to the nanocellulose reinforcement; however, no effect of silanization was found. Nevertheless, functionalization with APTES contributed to a decrease in formaldehyde emission from boards, which was not found in the case of the introduction of non-modified cellulosic nanoparticles.

6.
Materials (Basel) ; 15(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36295268

RESUMO

The aim of the presented study was to apply various bark species (birch, beech, maple, pine and spruce) as fillers for urea-formaldehyde (UF) resin in three-layer plywood manufacturing. For this purpose, all types of bark were ground and added to the adhesive mixture. The resultant plywood was subjected to investigations of the following: tensile strength, modulus of elasticity (MOE), bending strength (MOR) and formaldehyde emission. The results indicate a reduction in the tensile strength. Moreover, the lack of significant improvement in strength parameters can be explained by too high a load of the filler (20 wt%). In the case of formaldehyde emissions, a reduction was observed for birch (B-1), beech (B-2), maple (B-3) and pine bark (B-4). In addition, an increase in the emission of formaldehyde was recorded only for spruce bark.

7.
Materials (Basel) ; 15(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36013866

RESUMO

This research evaluated the possibility of using sawmill by-products from the roundwood-processing line in the production of wood-based panels. Due to its number of favorable properties, interesting chemical composition and large reserves resulting from the lack of industrial applications, the research focused particularly on the use of bark. Manufactured variants of boards differed in the proportions of wood chips to bark (70:30, 60:40, 50:50). Moreover, the boards containing only wood chips and a mixture of chips and sawdust were used as references. Urea-formaldehyde adhesive mixed with ammonium nitrate as a hardener was applied as a binding agent for the boards. Based on the mechanical properties (modulus of elasticity, modulus of rupture, internal bonding), physical properties (density, thickness swelling, water absorption) and content and emission of formaldehyde, it was found that it is possible to produce boards characterized by good properties from sawmill by-products without advanced processing. Moreover, the use of bark instead of sawdust in order to increase the homogeneity of the cross-section allows one to obtain panels with significantly lower formaldehyde emission and water uptake.

8.
Materials (Basel) ; 15(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35683230

RESUMO

Engineered wood products (EWP) such as glulam beams are gaining more and more popularity due to several advantages resulting from the wood itself, as well as the constant search for structural materials of natural origin. However, building materials face some requirements regarding their strength. Thus, the study aimed to assess the static bending strength of structural beams produced with the use of pine wood, after the periodic loading of approximately 80 kN for a year. The manufactured beams differed in the type of facing layers, i.e., pine timber with a high modulus of elasticity and plywood. The produced beams, regardless of their structure, are characterized by a similar static bending strength. Moreover, it has been shown that the loading of beams in the range of about 45% of their immediate capacity does not significantly affect their static bending strength and linear modulus of elasticity.

9.
Materials (Basel) ; 15(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35683273

RESUMO

Glulam beams are increasingly used in the construction industry because of their high strength and the possibility of using round timber with smaller cross-sections. The load-bearing capacity of beams is strongly related to the quality of the outer layers and, in the case of wood, especially the tension zones. For these reasons, this study decided to replace the outer lamella with tensile plywood. The produced beams were subjected to static bending strength and modulus of elasticity evaluation. It was shown that the best static bending strength values were obtained for beams containing plywood in the tension layer. However, the change in structure in the tension zone of beams made of glued laminated timber results not only in an increase in the load capacity of elements produced in this way but also in a decrease in the range/range of the obtained results of bending strength. This way of modifying the construction of glued laminated beams allows a more rational use of available pine timber.

10.
Materials (Basel) ; 15(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35591327

RESUMO

Numerous studies have shown that the geometry of micro-joints significantly affects the strength of the so joined timber element. The bending strength increases by creating a larger bonding area by increasing the length of the wedge joint. Although this type of joint has been successfully used for many years, it can still be troublesome to make. For these reasons, the present study investigated an easy-to-fabricate wedge joint, which we folded during the beams' formation and glued with the same adhesive as the individual lamellas. Although the research has not fully answered all the questions relevant to both scientific and technological curiosity, it indicates the great potential of this solution. Following the principle adopted in the ongoing wood optimisation work, we concluded that the beams of the target cross-section should be produced, and it should only be possible to cut them to a certain length. In this approach, we only removed defects at critical points for the beam structure and, in this way, up to 30% of the timber processed could be saved or better utilised.

11.
Materials (Basel) ; 15(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35591488

RESUMO

Engineered wood products, such as glulam beams, attract much attention from the building industry in recent years. Therefore, there is a constant necessity to seek new models of structural beams, which assume the use of outsized sawn wood pieces as an alternative for the standard construction timber. Three variants of glulam beams, composed of the main yield and side boards arranged in various structures, were proposed. Moreover, the usefulness of wedge-jointed, small-sized timber pieces was also investigated. The manufactured beams were tested, in terms of their mechanical properties, such as bending strength, elastic energy, modulus of elasticity, and resilience. The outcomes have shown that the beams manufactured using wedge-bonded timber of lower grade do not deviate considerably from beams produced from homogeneous lamellas. Furthermore, the results of modulus of elasticity, in the case of the three-layered beams composed of both small-sized non-homogenous main yield and side boards, exceeded the requirements from EN 14080. It allowed us to classify the obtained materials as GL 32c, which is the highest grade specified within the standard.

12.
Materials (Basel) ; 15(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35009541

RESUMO

The main objective of the study was to determine the effect of impregnation of the paper core with acetylated starch on the mechanical properties and absorbed energy in the three-point bending test of wood-based honeycomb panels under varying temperatures and relative air humidity conditions. Nearly six hundred beams in various combinations, three types of facings, three core cells geometries, and two paper thicknesses were tested. The experiment results and their statistical analysis prove a significant relationship between the impregnation of paper with modified starch and mechanical properties. The most effective in absorbing energy, the honeycomb panels, consisted of a core with a wall thickness of 0.25 mm and a particleboard facing.

13.
Materials (Basel) ; 14(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34885466

RESUMO

The aim of this study was to assess the static bending strength of pine glulam manufactured when obtaining the main yield, i.e., structural timber or timber to be used in the production of structural glulam. Analyses were conducted on pine timber harvested from three different locations in Poland. Two beam variants were manufactured, differing in the timber arrangement, horizontal vs. vertical. It was shown that the static bending strength of beams manufactured in the vertical timber arrangement variant is slightly higher than that of beams produced from horizontally arranged layers, with the latter beams characterised by a smaller confidence interval for this strength. Moreover, it was found that the difference in the value of the 5th percentile for both beam types is slight and both beam types are considered to exhibit a high bending strength of over 40 N/mm2.

14.
Materials (Basel) ; 14(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34640161

RESUMO

This paper presents the strength properties of wooden trusses. The proposed solutions may constitute an alternative to currently produced trusses, in cases when posts and cross braces are joined with flanges using punched metal plate fasteners. Glued carpentry joints, although requiring a more complicated manufacturing process, on the one hand promote a more rational utilisation of available structural timber resources, while on the other hand they restrict the use of metal fasteners. The results of the conducted analyses show that the proposed solutions at the current stage of research are characterised by an approx. 30% lower static bending strength compared to trusses manufactured using punched metal plate fasteners. However, these solutions make it possible to produce trusses with load-bearing capacities comparable to that of structural timber of grade C24 and stiffness slightly higher than that of lattice beams manufactured using punched metal plate fasteners. The strength of wooden trusses manufactured in the laboratory ranged from nearly 20 N/mm2 to over 32 N/mm2. Thus, satisfactory primary values for further work were obtained.

15.
Materials (Basel) ; 14(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200902

RESUMO

In this study, the possibility of using adhesives of natural origin for the manufacture of wood fiber-based lightweight panels was investigated. The boards, of a density ranging from 150 to 250 kg/m3, were glued together using commercial urea-formaldehyde resin (control board), solutions of rye flour and potato starch and two types of starch: oxidized and gelatinized. The density and density profile, compressive strength, modulus of elasticity, acoustic properties and thermal conductivity were determined in the produced boards. These studies show that when food components are used as binding agents in the manufacture of lightweight wood fiberboards, the properties obtained can be comparable with those of commercial boards manufactured using synthetic agents.

16.
Materials (Basel) ; 14(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063482

RESUMO

The study analyzed potential applicability for asymmetric reinforcement of glulam beams using materials with a higher modulus of elasticity. Reinforcement elements included smooth and ribbed steel rods as well as basalt rods. These rods were placed only in the tensile zone, assuming that they will not only impart increased rigidity but first of all will reduce the scatter of bending strength values. What is significant, tests were conducted on timber with defects, as it is most commonly used in industrial practice. Analyses showed that this provides an increase in rigidity close to the assumed level. A significant increase in strength was observed. The manufactured beams reinforced with steel and basalt rods were characterized by mean bending strength amounting to 54 and 47 N/mm2, respectively. However, no significant improvement was found in the scatter of the observed variable. Beams reinforced with steel exhibit a 20% higher strength than unreinforced beams. The lower strength of beams reinforced with basalt bars may be related to the lower modulus of elasticity of the basalt itself.

17.
Materials (Basel) ; 13(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932870

RESUMO

The paper assessed the feasibility of manufacturing glued structural elements made of pine wood after grading it mechanically in a horizontal arrangement. It was assumed that the pine wood was not free of defects and that the outer lamellas would also be visually inspected. This would result in only rejecting items with large, rotten knots. Beams of the assumed grades GL32c, GL28c and GL24c were made of the examined pine wood. Our study indicated that the expected modulus of elasticity in bending was largely maintained by the designed beam models but that their strength was connected with the quality of the respective lamellas, rather than with their modulus of elasticity. On average, the bending strength of the beams was 44.6 MPa. The cause of their destruction was the individual technical quality of a given item of timber, which was loosely related to its modulus of elasticity, assessed in a bending test. Although the modulus of elasticity of the manufactured beam types differed quite significantly (11.45-14.08 kN/mm2), the bending strength for all types was similar. Significant differences occurred only during a more detailed analysis because lower classes were characterized by a greater variation of the bending strength. In this case, beams with a strength of 24 MPa to 50 MPa appeared.

18.
Materials (Basel) ; 13(18)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906710

RESUMO

The study assessed the quality of pine lumber by marking the modulus of elasticity in the horizontal system. The research material was a plank with the following dimensions: 137 mm wide × 39.50 mm thick × 3485 mm long. The pine wood was obtained by sawing timber in the form of logs with round cross sections and originating from the Forest Division Olesno (50°52'30″ N, 18°25'00″ E). Each long log was sawn to provide four logs of about 3.5 m, which were marked as butt-end logs (O), middle logs (S)-2 items, and top logs (W). The origin of the logs from the trunk (Pinus sylvestris L.) has a significant impact on the physical and mechanical properties of the wood from which they are made. Only butt-end logs (log type O) allows for the production of high-quality timber elements. The pine timber that was evaluated in this paper had a high density of about 570 kg/m3 and a high percentage of timber items were assigned to class C24 and higher (above 50%). The adopted horizontal model of evaluation of the modulus of elasticity gave similar results to those obtained in an evaluation according to the EN-408.

19.
Materials (Basel) ; 13(9)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365659

RESUMO

The research hypothesis states that the impregnation of the honeycomb paper core of lightweight sandwich panels with modified starch, sodium silicate and epoxy resin (LiquidWood®) resin has a significant effect on its elastic properties. In this study, a recycled paper was used in three thicknesses, seven types of cell shapes, including two after numerical optimization and three types of impregnating agents. The method of digital image analysis determined the elastic constants of manufactured paper cores, which were subjected to axial compression in two directions. Based on the experimental results, elastic constants of the cores were calculated and compared with the results of numerical calculations. It has been shown that each of the impregnating solutions used improved the stiffness of the paper core. The best results were obtained for LiquidWood® epoxy resin and modified starch. An important parameter of cell geometry affecting their rigidity is the angle of the cell wall φ, as well as the arrangement of the common cell wall in relation to the direction of load. The numerical models developed were positively verified.

20.
Materials (Basel) ; 13(6)2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32183341

RESUMO

This study investigates the effects of chip type and sawdust percentage on physical and mechanical properties of chip-sawdust boards. The used wood chips varied in linear dimensions and original source. The origin determined the wood quality, which translated into the chips' linear dimensions. The used materials were chips from sawmill waste processing, aggregate processing of sawmill wood, and chips intended for medium-density boards. The experiment demonstrated that the best boards in terms of mechanical properties were obtained from 4-mm-thick chips with 30% sawdust content and a density of 850 kg/m3. These boards meet the requirements of the EN 312 (2010) standard for P5 boards.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...